Longitudinal analysis of microbial interaction between humans and the indoor environment
The bacteria that colonize humans and our built environments have the potential to influence our health. Microbial communities associated with seven families and their homes over 6 weeks were assessed, including three families that moved their home. Microbial communities differed substantially among homes, and the home microbiome was largely sourced from humans. The microbiota in each home were identifiable by family. Network analysis identified humans as the primary bacterial vector, and a Bayesian method significantly matched individuals to their dwellings. Draft genomes of potential human pathogens observed on a kitchen counter could be matched to the hands of occupants. After a house move, the microbial community in the new house rapidly converged on the microbial community of the occupants' former house, suggesting rapid colonization by the family's microbiota.
Research Papers
- Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
- Conjunction of factors triggering waves of seasonal influenza
- Algorithmic Bio-surveillance For Precise Spatio-temporal Prediction of Zoonotic Emergence
- Profiling Reactive Metabolites via Chemical Trapping and Targeted Mass Spectrometry
- Does the brain listen to the gut?
- (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans
- A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements
- Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx
- Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break
- Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism